
I.	서론

산업계 전반에 걸쳐 혁신의 물결을 몰고 오고 있

는 인공지능 기술은 데이터를 분석하고 판단을 보

조하는 수준의 인지형 AI를 지나서, 생성형 AI의 등

장으로 인해 창작, 코딩, 설계 등 인간의 고유 영역

이라 여겨진 분야마저 영향력을 미치고 있다. 최근 

주목받는 에이전틱 AI는 사용자의 명령 없이도 스
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As 6G networks evolve beyond the capabilities of 5G, artificial intelligence (AI) is expected to 
become intrinsic to the network s̓ design and operation rather than merely a supplementary tool. 
Such networks are called “AI-native” networks. This paper investigates the technical trends and 
architectural evolution of AI-native cross-domain 6G networks. We analyze the paradigm shift 
towards end-to-end network automation, in which AI is deeply integrated across all domains, 
ranging from the radio access network (RAN) and core network to the transport and service 
management and orchestration layers. The key enabling technologies driving this transformation, 
including the 3GPP network data analytics function, O-RAN RAN intelligent controller, and emerging 
application of large language model-based agents for intent-driven automation, are examined in 
detail. Furthermore, this study emphasizes the importance of unified frameworks for data and 
model lifecycle management (DataOps/MLOps) and the critical role of network digital twins in 
ensuring the stability and reliability of AI-driven policies. Finally, we identify significant technical 
challenges, such as real-time inference latency, trustworthiness, and cross-domain conflict 
resolution, and outline the future research directions required to realize fully autonomous 6G 
networks.
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스로 계획을 수립하고 작업을 연속 수행하는 능력

을 갖추게 될 것으로 예상되며, 더 나아가 피지컬 AI

의 등장은 디지털을 넘어 인간의 물리적 한계를 보

완하거나 대체하는 기술로, 노동과 생산 방식의 대

전환을 이끌 것으로 기대되고 있다.

인공지능 기술의 영향력은 통신 네트워크 산업 

또한 예외는 아니며, 이미 통신 네트워크의 자동화 

및 최적화를 위해서 인공지능 기술을 접목하는 노

력은 약 1980년대부터 지속적으로 진행 중이다. 구

체적으로는, 1980~1990년대에는 고정된 조건(Rule)

하에서 전문가 시스템을 통한 장애 진단 등의 영역

에서 활용되었으며, 2000년대에는 기계학습 기반의 

트래픽 예측 등에 적용되었다. 더 나아가, 2010년대

에는 SDN/NFV 기술의 등장과 함께 심층학습 기

반의 지능형 네트워크 기술로 진화해 왔으며, 급기

야 2020년대에는 AI 기술과 통신 네트워크의 융합

(Integrated AI and Communication)을 통한 AI-native 기

술로 발전하고 있다. 아울러, 다가오는 2030년대에

는 6G 완전 자율 네트워크를 실현할 수 있을 것으로 

기대하고 있다.

본고에서는 최근 비약적인 발전을 거듭하고 있는 

AI 기술을 통신 네트워크에 적용하여 지능적인 네

트워크를 구축‧운용하는 기술 사례를 정리하였다. 

또한, AI가 그 기능을 다할 수 있도록 최적의 통신망

을 구성하고, 이를 통해 AI 기반 지능화된 서비스를 

제공하는 AI 네트워크 기술 및 서비스를 분석하였

다. 마지막으로, 분석한 기술 동향을 바탕으로 핵심

기술 확보를 위한 추진 전략 및 기술 로드맵을 제시

하였다.

II.	AI-native 네트워크

1. 개념 및 정의

AI-native 네트워크는 AI 기술이 네트워크 운용의 

보조적 도구를 넘어서, 네트워크의 구조 전반에 내

재화된 형태의 차세대 네트워크의 개념으로서 AI가 

네트워크의 설계‧제어‧운용‧진화 전 과정에 걸

쳐 중심적으로 작동하며, 동시에 AI가 요구하는 초

대규모 데이터 처리‧학습‧추론 환경을 네트워크 

시스템 자체가 내재적으로 지원하도록 설계된 차세

대 네트워크로 정의된다.

즉, 다양한 서비스의 복잡한 요구사항에 대응하

고 네트워크의 효율성과 성능 향상, 운용비용 절감

과 재투자를 통한 사용자 경험 개선과 비즈니스 혁

신을 위하여, 현재는 네트워크에서 기계학습과 심

층학습 기술을 보조적으로 활용하고 있는 수준이지

만, 향후에는 데이터의 수집에서 학습, 추론, 검증, 

실행, 피드백에 이르는 AI/ML 전주기가 통신 네트

워크 전구간에 내재화된 형태로 상호유기적으로 동

작함으로써, 네트워크 운용 및 제어 관리의 자동화

(AI for Network)와 AI 응용 서비스의 최적화(Network 

for AI)를 지원하는 AI 네트워크로 진화할 것으로 전

망된다. 그림 1에서는 AI-native 네트워크의 개념도

를 보인다.

출처  Reprinted from 백용순 외, “AI 네트워크 전략,” 한국전자통신연구

원 입체통신연구소, 2025. 9. 22.

그림 1   AI-native 네트워크 개념도
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은 사람의 개입이 없는 완전 자율화, ISG Integrated 

Sensing and Communication(ISAC)는 AI 기반 센싱‧

통신 통합 기술을 6G 요소로 다루고 있다[4-6]. 또

한, ISG Multiple Access Techniques(MAT)는 자율성

과 신뢰성을 갖춘 AI 모델의 적용 가능성을 연구하

고 있다[7]. 

3GPP

3GPP는 Rel.15부터 AI/ML을 통신망에 적용하기 

위한 표준화를 시작하여, Rel.16에서 Network Data 

Analytics Function(NWDAF)을 통해 네트워크 데이

터 기반 인사이트 제공 구조를 구축하였다. 이후 

Rel.17~19에서 연합학습, QoS 예측, 데이터 전송 협

상 등의 기능이 발전하며 실용화가 가속화되었다. 

5G-Advanced에 대한 표준과 6G에 관한 연구가 병

행되는 Rel.20에서는 단말(UE) 데이터를 수집해 AI 

모델 학습에 활용하는 방안, 사용자 평면(UP: User 

Plane)의 성능 분석 및 최적화를 위한 5G에서의 AI 

고도화 기능이 논의되고 있다[8]. 이와 더불어, AI 

에이전트 개념을 포함하여 6G 시스템 관점에서의 

AI 사용 및 AI/센싱을 위한 데이터 관리 프레임워크 

등에 대한 연구가 시작되었다[9].

RAN 측면에서는 Rel.17부터 AI/ML 기반의 지능

화 프레임워크를 도입하여, 에너지 절약, 이동성 최

적화 등 핵심 기능에 대한 초기 적용을 시작하였다. 

Rel.18~19에서는 단말–기지국 간 협력 구조, 모델 

수명주기 관리, 빔 관리, 네트워크 슬라이싱 등 다양

한 기능이 구체화되며 AI/ML 활용 범위가 확장되

었다. 이어서 Rel.20에서는 5G-Advanced 기능으로 

기존 NR 구조 내에서의 AI 활용을 통해 네트워크 

효율성과 사용자 경험의 향상을 진행하고 있다[10]. 

이와 더불어, 6G RAN 설계를 위한 구조적 정비가 

진행 중이며, AI 기반 기능 확대와 함께 AI 없이도 

안정적으로 동작 가능한 시스템 설계에 대한 논의

2. 표준 및 기술 동향

2.1 표준 동향

ITU-T

ITU-T는 SG13을 중심으로 통신망에 AI/ML을 

통합하기 위한 구조, 기능, 요구사항, 사용 사례를 

표준화하고 있으며, Y.3172를 통해 ML 파이프라인 

기반 프레임워크를 제시하였다. 이후 Y.3177 등 다

양한 권고안을 통해 자동화, 성능 평가, 모델 마켓플

레이스 등 구체 기술을 다루고 있다.

2024년 7월에는 AI-native 네트워크를 연구하는 

FG-AINN(Focus Group on AI-Native Networks)이 출범

했으며, AI가 네트워크 내재화 구조로 통합되는 전

환을 모색하고 있다[1]. 특히, 이 그룹은 개념 정의, 

구조 설계, PoC 프레임워크 수립 등을 중심으로 활

동 중이다.

또한, 생성형 AI의 통신망 활용을 다루는 TR. 

GenAI-Telecom이 작성되었고, 신뢰성과 효율성 확

보를 위한 요구사항과 평가 방법론이 논의되고 있

다[2]. 데이터셋 구조 및 관리에 대한 표준화도 병행 

추진 중이다. 

ETSI

ETSI는 AI를 ICT 전반의 전환 기술로 보고, 

Operational Co-ordination Group on Artificial In-

telligence(OCG AI)를 중심으로 다양한 Technical 

Committee(TC) 및 Industry Specification Groups(ISG)

와 협력하고 있다. 특히 TC Securing Artificial Intelli-

gence(SAI)는 AI 보안 및 신뢰성 확보를 위한 기술 규

격을 개발하고 있으며, 사이버 보안 요구사항과 법

률 정합성까지 고려한 문서를 발행 중이다[3].

구체적으로는, ISG Experiential Networked In-

telligence(ENI)는 경험 기반 네트워크 적응, ISG 

Zero-touch network and Service Management(ZSM)
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가 병행되고 있다[11].

O-RAN Alliance

O-RAN Alliance는 2018년 설립된 글로벌 표준화 

기구로, 폐쇄적이고 제조사 종속적인 무선 접속망

을 개방적이고 지능적인 구조로 전환하기 위해 출

범하였다[12]. 특히 RAN Intelligent Controller(RIC)

의 도입으로 AI 기반 정책 제어와 네트워크 최적화

가 가능해지면서, 무선망 운용은 자율적이고 지능

적인 방식으로 진화하였다[12,13]. 여기에 근실시간

(Near-RT)‧비실시간(Non-RT) AI 응용과 DU‧CU 

내부의 실시간 AI 응용이 결합되어, AI는 무선 자

원 관리와 제어에 직접 활용될 수 있다. 이를 통해, 

MU-MIMO 스케줄링과 CSI 기반 제어를 최적화하

고, 실시간 학습으로 효율적인 자원 배분을 지원한

다[14]. 또한, 트래픽 부하 예측을 활용한 절전 제어

와 AI 기반 이상 탐지 및 위협 대응이 표준 규격에 

포함되면서, O-RAN은 성능‧안정성‧지속가능성

을 동시에 추구하고 있다[13,14].

6G 대비를 위해 운영되는 nGRG(next Generation 

Research Group)는 6G 활용 사례, 구조, AI-native 네트

워크, 크로스-도메인(Cross-domain) AI, 보안을 주요 

연구 주제로 삼고 있으며, O-RAN 내부에 AI를 내

재화하고 서비스‧엣지‧코어 전반을 아우르는 협

력형 AI 모델 개발을 추진하고 있다[12,13]. 최근에

는 생성형 AI의 잠재력이 주목받고 있는데, 이는 네

트워크 관리 자동화, 멀티모달 디지털 트윈, 물리계

층 신호 처리뿐만 아니라 실시간 상호작용 서비스, 

지능형 어시스턴트, 시맨틱 커뮤니케이션 같은 6G 

서비스로 확장될 수 있다[15]. 이를 통해, O-RAN은 

단순한 개방형 구조를 넘어, 생성형 AI를 내재화한 

지능형 네트워크 플랫폼으로 진화하고 있음을 보여

준다.

AI-RAN Alliance

AI-RAN Alliance는 AI 기술을 활용하여 RAN 성

능 향상 및 유연성 제고를 목표로 하며, AI-for/and/

on-RAN 개념을 통해 무선 자원 최적화, AI 작업 동

시처리, AI 기반 서비스 전달을 추구한다. 최근에는 

Data-for-AI TG와 Test Methodology TG를 신설해, 

AI 모델 학습용 RAN 데이터 정의와 AI-RAN 시스

템의 테스트 프레임워크 개발에 착수하였다[16]. 

한편, AI-RAN Alliance는 공식 표준 개발 기구

(SDO)는 아니지만, 이들이 생산하는 기술 보고서, 

평가 프레임워크, 개념 검증(PoC) 결과 등은 3GPP, 

O-RAN Alliance 등에서의 실질적인 표준화 논의에 

중요한 참조 자료로 활용되고 있다. 특히, AI-RAN 

Alliance에서는 현실적인 유즈케이스 기반의 사전 

표준화 연구를 통해, 기술 적용성과 표준화 간의 간

극을 좁히고, 표준이 시장 수요와 기술 진화 속도에 

부합할 수 있도록 이바지하고 있다.

2.2 기술 동향

제조사

Nokia는 완전 자율 네트워크(Level 5)를 목표로 

ANF(AI Network Fabric)를 통해 네트워크 관측‧분

석‧보안‧자동화를 통합한 지능형 플랫폼을 개발

하고 있으며, Google Cloud 기반 생성형 AI로 트래

픽 분석, 이상 탐지, 자동복구 기능을 구현 중이다. 

Microsoft와는 LLM 기반 서비스 자동화를 공동 개

발하고 있으며, 실증 사례를 통해 에너지 절감 성과

도 확보하였다. 또한, Nokia는 AI-RAN Alliance에서

도 주요 역할을 맡고 있다.

Ericsson은 AWS와 Gen-AI Lab을 운영하며 OSS/

BSS 자동화를 추진하고, 20여 개 이상의 AI 앱을 통

합한 다중 에이전트 시스템을 통해 운용 효율화를 

실현 중이다. NetCloud Assistant는 LLM 기반 가상 
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지 최적화를 추진하고 있다. MWC에서 자율 운용 

레벨 4 이상의 코어망 및 RAN 자동화를 시연하였

으며, 자체 AI 개발 프레임워크(CM-AI)와 연계된 모

델 마켓플레이스도 운영 중이다.

NTT DOCOMO는 AI-RAN Alliance의 핵심 구

성원으로서, AI/ML 기술을 기반으로 한 무선 자원 

관리 최적화, 네트워크 트래픽 예측, 에너지 절감 등

을 위한 다양한 PoC를 진행 중이다. 특히, RIC 기반

의 AI 서비스 개발 및 NWDAF 활용을 통해 RAN 

지능화를 추진하고 있으며, 개방형 혁신을 통한 제

조사 협력 및 실증도 병행하고 있다. AI 모델의 학

습‧추론 위치 분산, 데이터 프라이버시 보호를 고

려한 연합학습 적용 연구도 병행 중이다.

Deutsche Telekom은 ‘Zero Touch Service and Net-

work Management’ 전략하에, 네트워크 운용 자동화 

및 고객 서비스 최적화를 위한 AI 활용을 본격화하

고 있다. T-Mobile US와 공동으로 AWS 기반 AI 플

랫폼을 구축하여, 실시간 장애 감지 및 복구, 고객 

이슈 자동 분류, 자동 자원 할당 등을 실현하고 있

다. 또한, OSS/BSS에 LLM 기반 에이전트 도입을 

시도하고 있으며, 자체 AI 개발자 포털(AI@DT)을 

통해 AI 내재화를 가속 중이다.

T-Mobile US는 Deutsche Telekom과의 협력을 바

탕으로, 고객 경험 개선과 운용 효율화를 위한 AI 도

입을 확대하고 있다. 특히, 실시간 트래픽 관리와 네

트워크 품질 모니터링 자동화, 고객 문의 응답 지원 

등에 GenAI와 분석 기술을 접목하고 있으며, 6G를 

대비하기 위한 AI 기반 네트워크 지능화 연구에도 

참여하고 있다.

SK텔레콤은 LLM 기반 AI 에이전트를 네트워크 

운용에 적용하고 있으며, Telco LLM을 활용한 이

상 탐지, 트래픽 예측, 고객 민원 분석 등을 통해 운

용 자동화를 추진 중이다. 일부 망 구간에는 AI 기반 

자가 복구 기술을 적용하고 있으며, UAM/6G 대비

전문가로서, 네트워크 질의응답, 진단 등을 자동

화하고 있다. 또한, RAN 에너지 최적화, 신경 모방 

AI 기반 초저전력 무선 신호 처리 기술 등을 개발 

중이다.

Huawei는 AI-native 네트워크 구조 전환을 목표로 

AI 코어망을 발표하고, AIBA 기반 Agentic Core 구

현을 추진 중이다. 또한, IP/전송망에서도 L4 자율

망 솔루션을 상용화하고 있으며, ADN 전략하에 AI 

통합 관리 플랫폼(iMaster NAIE 등)을 구축하였다. 또

한, 실제 운용망에서 AI 기반 장애 예측 및 복구 성

능 향상이 가능함을 입증하고 있으며, 글로벌 파트

너십을 통해 6G 대응을 강화하고 있다.

Samsung은 AI-RAN 기술 선도에 집중하여, 

NVIDIA와 협력한 AI 가속 기반 vRAN을 PoC로 선

보이고, MWC 2025에서 AI 기반 신호처리 기술을 

시연하였다. O-RAN 기반 상용망에서도 AI 기반 에

너지 매니저(AI-ESM)를 적용, 실시간 전력 최적화를 

구현하고 있다. 이 외에도 자체 개발 NOS, CognitiV 

등을 통해 자동화와 슬라이싱 최적화도 병행 중이다.

통신사

AT&T는 ‘Network AI’ 전략하에 자체 데이터레이

크 및 분석 플랫폼(Aether)을 기반으로, AI/ML을 통

한 네트워크 서비스 품질 개선 및 예측 기반 운용을 

수행하고 있다. 뿐만 아니라, Google Cloud와 협력

하여 네트워크 운용 자동화 및 GenAI 기반 고객 지

원 시스템을 공동 개발 중이며, AI 기반 트래픽 예측

과 장애 사전 대응 시스템을 통해 운용 비용 절감을 

실현하고 있다. 또한, MEC 기반 AI 추론 기능을 네

트워크 엣지에 통합하려는 시도도 진행 중이다.

China  Mobi l e은 자사 AI  네트워크 전략인 

‘CUBE-Net 3.0’하에, 지능형 통신망을 위한 AI 구

조를 정립하고 있으며, NWDAF 기반 데이터 분석, 

디지털 트윈 기반 네트워크 예측 관리, AI 기반 에너
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를 위한 위치 예측 및 디지털 트윈 기반 시뮬레이션 

환경 연구도 병행하고 있다. 또한, Global Telco AI 

Alliance(GTAA)에 참여하여 LLM 공동 개발 및 AI 서

비스 세계화를 모색하고 있다.

KT는 ‘AI Full Stack’ 전략을 기반으로 AI를 위한 

기반 시설부터 서비스까지 투자를 확대하고 있으

며, 네트워크 운용 자동화와 AI 연계 검증을 진행 중

이다. 구체적으로는, Core/Transport/RAN 각 계층

에서 NWDAF 기반 예측‧이상 탐지‧트래픽 최적

화를 검토하고 있으며, MEC 기반 추론 연동과 실시

간 제어 구조도 일부 실증하였다. 

LG U+는 네트워크 자동화 및 고객 경험 향상을 

위한 AI 적용을 지속 확대하고 있으며, 특히 데이터 

기반 AI 장애 감지‧예측, 자가 복구 기술, 지능형 

품질 분석 시스템 등에 집중하고 있다. 자체 통합 

관제 플랫폼에 LLM 기반 분석 기능을 시범 적용하

여 운용자 개입 없이 알람 분류 및 원인 진단을 수

행하는 구조를 검토하고 있으며, AI 기반 QoE 예측 

기술을 통해 사용자 중심의 품질 최적화를 강화하

고 있다. 

III.	크로스-도메인 6G 네트워크

6G 시대의 이동통신 네트워크는 단순히 고속‧

대용량 전송을 넘어서, 설계 단계부터 인공지능(AI)

을 내재화한 “AI-native 네트워크”를 지향하고 있

다. 이는 기존 4G/5G에서 특정 기능에 AI를 개별적

으로 적용하던 접근과 달리, 단말에서 무선 접속망

(RAN), 코어망, 전송망, 엣지‧클라우드, 그리고 운

용‧관리‧오케스트레이션 계층에 이르기까지 네

트워크 전 계층을 하나의 종단 간(E2E: End-to-End) 

제어 루프로 통합하려는 방향이다.

이러한 변화 속에서, 종단 간 AI 기반 네트워크 자

동화 및 최적화 기술은 6G 구조의 핵심 구성 요소로 

자리 잡고 있으며, O-RAN, 3GPP 5G-Advanced/6G 

표준, AI/ML 데이터‧모델 파이프라인, 디지털 트

윈, 대규모 언어모델(LLM) 기반 네트워크 운용 등 

다양한 축에서 기술 발전이 병행되고 있다. 

1. E2E 네트워크 자동화의 방향성

6G 논의에서 “AI-native 네트워크”란 네트워크의 

설계‧배치‧운용 전 과정에서 AI/ML을 필수 요소

로 가정하는 개념이다. 네트워크는 더 이상 단순한 

패킷 전달 환경이 아니라, 방대한 텔레메트리(측정 

데이터)를 수집하고 이를 기반으로 학습과 추론을 

수행하며, 그 결과를 다시 네트워크 제어에 반영하

는 지능형 시스템으로 재정의된다.

종단 간 관점에서 보면, 단말과 엣지 노드는 채널 

상태 예측, 위치 추정, 센싱 기반 서비스 지원, 경량 

추론 수행 등을 담당하며, RAN은 빔포밍, 스케줄

링, 간섭 관리, 핸드오버 및 커버리지/용량 최적화 

등 무선 자원 제어에 AI를 활용한다. 코어망과 서비

스 계층에서는 트래픽 패턴 분석, 슬라이스별 SLA 

예측, 이상 탐지 및 보안, 서비스 품질(QoS/QoE) 보

장을 위한 자원 조정 등이 AI 기반으로 자동화된다. 

최상단의 서비스‧관리 계층에서는 오케스트레이

터와 SMO(Service Management and Orchestration)가 정

책 및 의도(Intent)를 기반으로 다중 도메인 자원을 

통합 관리하며, 이 과정에 AI 에이전트가 적극 활용

된다.

이와 같이, 데이터 수집–모델 학습–정책 결정–

네트워크 제어–결과 검증으로 이어지는 폐쇄 루프

(Closed-Loop)를 네트워크 전 계층에 걸쳐 구성하는 

것이 6G 종단 간 네트워크 자동화의 기본 방향이며, 

5G 시대의 기능별 SON(Self-Organizing Network)을 

넘어 네트워크 전체를 대상으로 하는 “self-learning, 

self-optimizing network”로 진화하는 추세이다.
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2. RAN 영역의 AI 기반 자동화

6G 시대의 무선 접속망은 O-RAN 구조와 3GPP

의 AI/ML 표준을 중심으로 AI 기반 자동화가 급격한 

진전을 보이고 있다. O-RAN은 RIC(RAN Intelligent 

Controller)를 중심으로 Near-RT RIC과 Non-RT RIC

을 구분하고, 각각 xApp과 rApp이라는 애플리케이

션 형태로 AI 기반 제어 기능을 탑재한다. Near-RT 

RIC은 수 밀리초에서 수 초 수준의 짧은 시간 단위

에서 스케줄링, 간섭 제어, 이동성 관리, 에너지 절

감 등의 실시간 제어를 수행하며, Non-RT RIC은 

장기적인 데이터 분석과 정책 수립, 모델 학습 및 재

학습 관리를 담당한다.

최근에는 여기에 더해 LLM 기반 에이전트가 

xApp/rApp의 선택과 파라미터 조정, 정책 생성

과 수정, 성능 분석 보고까지 자동화하는 “지능형 

RIC” 개념도 활발히 제안되고 있다. 이러한 기술 체

계에서는 운용자가 자연어 수준의 요구사항을 입력

하면, 에이전트가 상황에 맞는 xApp/rApp 조합과 

설정을 스스로 결정‧배포하여 RAN 자원을 최적

화하는 것이 목표가 된다.

3GPP 측면에서 보면, Rel.18에서는 NG-RAN에

서의 AI/ML 활용을 위해 데이터 수집 및 특성 보고

를 위한 신호 구조와 인터페이스가 정비되고 있으

며, Rel.19 이후에는 슬라이싱, 커버리지‧용량 최적

화, 에너지 효율 개선 등 다양한 사용 사례에 AI/ML

을 적용하기 위한 구체적 규격 작업이 확대되고 있

다. 특히 “AI-friendly” NR 인터페이스 설계를 통해, 

RAN에서 생성되는 다양한 측정값과 데이터 특성

을 표준화된 형식으로 수집‧공유함으로써 AI 모델 

개발과 적용의 호환성을 확보하려는 움직임이 두드

러진다.

결과적으로 RAN 영역의 기술 흐름은 개별 기능

에 대한 ML 기반 최적화 수준을 넘어, O-RAN RIC

과 3GPP 규격을 매개로 무선 자원 전체를 AI가 종

단 간으로 제어하는 방향으로 진화하고 있다고 정

리할 수 있다.

3. 코어망·서비스 계층 종단 간 최적화

코어망과 서비스 계층에서는, 3GPP가 정의한 

NWDAF(Network Data Analytics Function)를 중심으

로 데이터 분석과 AI 활용 범위가 크게 확장되고 있

다. 초기 NWDAF는 주로 코어망 내부의 트래픽 상

태를 분석하고 정책 제어에 활용하는 기능으로 정

의되었으나, 점차 RAN의 측정값, 엣지 컴퓨팅 자원 

정보, 응용 서비스 성능 지표 등을 통합하는 범용 분

석 계층으로 진화하는 추세이다.

이러한 확장의 결과, NWDAF는 트래픽 부하와 

혼잡 상태 예측, 슬라이스별 SLA 위반 가능성 평가, 

공격‧장애 전조의 이상 징후 탐지, 자동 복구 정책 

실행 등 다양한 역할을 수행하게 된다. 특히, 슬라이

싱 환경에서는 서비스별‧고객별 요구사항에 따라 

서로 다른 지연, 신뢰도, 처리량 목표를 만족해야 하

므로, AI를 활용한 예측 및 자원 재배치가 필수 요소

로 부상한다.

슬라이싱의 종단 간 제어 측면에서 보면, 운용자

는 특정 슬라이스에 대해 “지연 5ms 이하, 가용성 

99.999% 보장”과 같은 의도를 선언하고, 네트워크

는 이를 정책과 자원 할당, 강화학습 기반 제어 정책 

등으로 자동 변환하여 무선‧전송‧코어‧엣지 도

메인을 아우르는 자원 배치를 수행하는 방향으로 

발전하고 있다. 이 과정에서는 슬라이스의 설계, 배

포, 모니터링, 재구성이 모두 AI에 의해 자동화되며, 

서비스 품질 저하나 장애 징후 발생 시에도 AI가 선

제적으로 대응하여 SLA를 유지하려는 구조가 지향

된다.
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4. 데이터·모델 종단 간 AI 프레임워크

네트워크 전 계층에 AI가 도입되면서, 최근에는 

개별 AI 알고리즘보다도 데이터와 모델의 생애주

기(Lifecycle) 전체를 어떻게 관리‧자동화할 것인가

가 중요한 화두로 떠오르고 있다. 이러한 측면에서 

6G-DALI와 유사한 연구‧프로젝트들은 “6G 데이

터 공간(6G Dataspace)” 개념을 도입하여, 네트워크

에서 발생하는 모든 텔레메트리를 공통 데이터 플

랫폼으로 수집‧통합하고, DataOps와 MLOps를 결

합한 종단 간 AI 프레임워크를 제안하고 있다.

DataOps 관점에서는, 다양한 네트워크 도메인에

서 수집되는 로그, 카운터, 측정값, 이벤트, 토폴로

지 정보를 정제하고 특성화하며, 메타데이터와 카

탈로그를 관리하는 작업이 자동화된다. 이를 통해, 

AI 모델 개발자가 데이터 수집‧정제에 소모하던 

수작업을 줄이고, 표준화된 데이터 규격을 기반으

로 모델을 설계할 수 있게 된다.

MLOps 관점에서는, 모델 설계와 실험, 학습‧검

증, 배포, 모니터링, 성능 저하 및 데이터/컨셉 드리

프트 탐지(Data/Concept drift detection), 자동 재학습

까지의 전 과정이 파이프라인 형태로 자동화된다. 

통신사 환경에서는 서비스나 슬라이스의 종류가 매

우 다양하고 동적으로 변하기 때문에, 새로운 서비

스가 도입될 때마다 해당 서비스에 적합한 데이터 

파이프라인과 모델 파이프라인이 규격화된 양식으

로 자동 생성‧배포되는 구조가 이상적인 목표로 

제시되고 있다.

즉, 6G에서의 종단 간 네트워크 자동화는 “네트

워크 제어 루프”의 자동화와 동시에 “데이터‧모

델 운용 루프”의 자동화를 요구하며, 이 두 루프를 

통합적으로 설계하는 것이 핵심 과제로 부상하고 

있다.

IV.	주요 기술 과제 및 연구 이슈

6G 종단 간 AI 기반 네트워크 자동화 및 최적화 

기술은 빠르게 발전하고 있으나, 실용화를 위해 해

결해야 할 기술적 과제도 여전히 많다.

첫째, 초저지연‧초고신뢰 환경에서의 실시간 AI 

추론과 분산 제어 문제가 있다. DU/CU, 엣지 노드, 

단말 등 다양한 위치에서 경량 모델의 실시간 추론

을 수행해야 하며, xApp/rApp, NWDAF, 오케스트

레이터 사이의 제어 과정이 지연과 대역폭 제약을 

고려해 안정적으로 동작하도록 설계해야 한다.

둘째, 데이터 및 데이터 특성의 표준화와 품질 관

리가 중요하다. 3GPP와 O-RAN 수준에서 AI용 공

통 데이터 특성과 규격, 인터페이스를 어디까지 표

준화할 것인지, 사업자별‧제조사별 이질적인 데이

터의 품질, 잡음, 편향(Bias), 드리프트를 어떻게 관리

할 것인지가 실질적인 난제이다.

셋째, AI 기반 제어의 안전성‧설명 가능성‧

검증 문제가 있다. 특히, 강화학습 기반 정책의 경

우, 안전 제약을 만족하는 방향으로 학습을 유도하

는 안전 강화학습(Safe RL) 기법과 정책 결정의 근거

를 사람이 이해 가능한 형태로 제공하는 설명 가능 

AI(XAI)가 요구된다. 또한, 정책 변경 전에 디지털 트

윈에서 “what-if” 시뮬레이션을 수행하고, 일정 기준

을 만족할 때만 실제 네트워크에 반영하는 절차도 

필수적으로 고려되어야 한다.

넷째, RAN 에너지 절감과 슬라이스 SLA 유지처

럼 상충 발생 가능한 목표를 다루는 크로스-도메인 

협조 제어 문제가 있다. 특히, 여러 AI 에이전트가 

서로 다른 목표를 가지고 동시에 동작할 때, 전체 시

스템 관점에서 안정적인 균형점에 수렴하도록 설계

하는 것은 멀티 에이전트 강화학습, 게임이론, 분산 

최적화 등 다양한 분야의 연구가 필요하다. 

마지막으로, 기술적 요소뿐만 아니라 운영 조직
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과 프로세스 측면의 정합성 확보도 중요한 과제이

다. NOC/OSS/BSS 역할 구조 속에서 AI 에이전트

가 어느 수준까지 의사결정을 자동화할지, 사람이 

관여하는 범위를 어떻게 설정할지, AI가 제안하는 

조치에 대해 운용자가 최종 승인‧감독하는 절차를 

어떻게 설계할지 등이 실제 도입 단계에서 핵심적

인 고려사항이 될 것이다.

1. LLM·에이전트 기반 네트워크 자동화

최근 산업과 표준화 동향에서는, 대규모 언어모

델(LLM)과 에이전트 기술을 네트워크 운용‧관리

와 결합하려는 시도가 매우 활발하다. 네트워크 운

용자는 기존의 복잡한 CLI나 스크립트 대신, 자연

어로 네트워크 상태 조회, 문제 분석 요청, 정책 변

경 요청, 슬라이스 설계 요구 등을 표현하고, LLM 

기반 에이전트는 이를 해석하여 적절한 데이터 질

의, 정책 생성, 모델 선택 및 파라미터 조정, xApp/

rApp 배포, 결과 분석‧요약까지 일관되게 수행하

는 구조를 지향한다.

이러한 의도 주도 자동화(Intent-Driven Automation)

에서는, 우선 의도를 표현하기 위한 도메인 특화 언

어 혹은 정책 언어의 표준화가 필요하고, LLM이 생

성하는 제어 명령이 네트워크 안정성을 해치지 않

도록 하는 정책 관리와 검증 메커니즘이 필수적이

다. 이를 위해, LLM이 직접 네트워크를 조작하기보

다는, LLM이 제안한 조치를 디지털 트윈 환경에서 

먼저 검증한 뒤 실제 네트워크에 반영하는 2단계 구

조가 널리 논의되고 있다.

더 나아가, LLM은 네트워크 이상 상황에 대한 원

인 분석 보고서 작성, 장애 대응 지침서 생성, 운용

자 교육용 시나리오 생성 등 문서화‧설명 영역에

서도 자동화를 제공할 수 있다. 이로 인해, 네트워크 

운영의 기술 장벽을 낮추고, 경험이 부족한 운용자

도 복잡한 환경에서 적절한 대응을 할 수 있도록 지

원하는 방향의 응용이 예상된다.

2. 디지털 트윈 기반의 종단간 안정화

6G 구조 논의에서 네트워크 디지털 트윈(Network 

Digital Twin)은 종단 간 AI 기반 자동화의 필수 요소

로 자리 잡고 있다. 디지털 트윈은 실제 네트워크의 

토폴로지, 자원 상태, 트래픽 패턴, 서비스 구성을 

가상 공간에 정밀하게 복제한 모델로, 다양한 제어 

정책과 AI 알고리즘을 실제 네트워크에 적용하기 

전에 사전 검증할 수 있는 실험 환경을 제공한다.

AI 기반 제어, 특히 강화학습(RL)과 같이 탐색

(Exploration)이 필요한 알고리즘은 실제 네트워크에

서 직접 학습할 경우 서비스 품질 저하나 장애를 초

래할 위험이 크다. 이에 따라, 디지털 트윈 환경에

서 충분한 시뮬레이션을 통해 정책을 학습‧조정하

고, 그 결과를 안정성이 검증된 상태로 실제 네트워

크에 이식하는 방법이 선호된다. 또한, 장애나 공격, 

대규모 트래픽 급증과 같은 비정상 시나리오를 디

지털 트윈에서 반복적으로 시험함으로써 실제 환경

에서 발생하기 어려운 극단 상황에 대한 대비책을 

사전에 마련할 수 있다.

결과적으로 디지털 트윈은 종단 간 자동화의 효

율성을 높이는 동시에, AI 기반 제어의 안정성과 신

뢰성을 확보하는 핵심 기반으로 기능하게 된다.

V.	 결론 및 시사점

6G에서의 종단 간 AI 기반 네트워크 자동화 및 최

적화 기술은 네트워크를 단순한 통신 환경에서 지

능형 시스템으로 전환하는 핵심 동력이다. RAN 영

역에서는 O-RAN RIC과 3GPP AI 규격을 중심으로 

AI 기반 제어가 구조화되고 있으며, 코어망과 슬라



20 전자통신동향분석 제41권 제1호 2026년 2월

이싱, 서비스 계층에서는 NWDAF와 의도 기반 슬

라이스 관리가 종단 간 자원 최적화를 지향하고 있

다. 동시에, 데이터‧모델 파이프라인을 통합적으

로 관리하는 DataOps/MLOps 프레임워크, LLM/

에이전트 기반의 의도 주도 자동화, 네트워크 디지

털 트윈을 활용한 안전한 정책 검증 등은 6G AI- 

native 네트워크를 실현하기 위한 필수 구성 요소로 

부상하고 있다.

향후 연구 및 실증 과제는, 실시간성‧분산성‧

안전성‧설명 가능성‧조직적 수용성 등 복합적인 

요구사항을 동시에 만족시켜야 한다는 점에서 도전

적인 측면이 존재한다. 그러나 이러한 과제를 해결

할 수 있다면, 6G 네트워크는 스스로 학습하고 적응

하며, 서비스와 환경 변화에 능동적으로 대응하는 

진정한 의미의 “자율 네트워크”로 진화할 수 있을 

것으로 기대된다.

향후에는 RAN 중심, 슬라이싱/코어 중심, 운

용‧오케스트레이션/에이전트 중심 등 특정 영역

을 선택하여, 구체적인 PoC 아키텍처와 알고리즘, 

실험 시나리오를 설계‧분석하는 형태의 후속 연구

가 필요하며, 특히 종단 간 시나리오 기반 성능 평가

와 실제 환경 데이터에 기반한 검증이 중요해질 것

으로 전망된다.

AI-native Network(AI 내재화 네트워크)  기존 네트워크에 AI
를 보조적으로 덧붙이는 수준을 넘어, 설계 단계부터 AI를 필수 
요소로 통합한 차세대 네트워크. 인공지능이 네트워크의 설계, 제
어, 운영, 진화 전 과정에서 중심적인 역할을 수행하며, 네트워크 
기반 시설 자체가 AI 학습과 추론을 지원하도록 구축된 시스템을 
의미함

Agentic AI(에이전틱 AI)  사용자의 구체적인 명령 없이도 스스
로 목표를 달성하기 위해 계획을 수립하고, 여러 작업을 연속적으
로 수행하며 자율적으로 의사결정을 내리는 진화된 인공지능 기술

Digital Twin(디지털 트윈)  현실 세계의 네트워크 토폴로지, 자
원 상태, 트래픽 패턴 등을 가상 공간에 정밀하게 복제한 모델. AI 
기반의 제어 정책이나 새로운 설정을 실제 망에 적용하기 전에 가
상 환경에서 시뮬레이션하여 안전성을 검증하는 데 활용됨

Intent-driven(인텐트 기반) 관리  운용자가 구체적인 파라미터
나 명령어를 입력하는 대신 “지연 시간 5ms 이하 보장”과 같은 목
표(Intent)를 자연어 등으로 제시하면, 시스템이 이를 해석하여 필
요한 정책과 자원 설정을 자동으로 수행하는 네트워크 관리 방식

NWDAF(Network Data Analytics Function)  3GPP 5G 표
준에서 정의된 네트워크 데이터 분석 기능. 초기에는 코어망 내부
의 트래픽 분석을 위해 고안되었으나, 6G로 진화하며 RAN, 엣
지, 단말 등 네트워크 전 구간의 데이터를 수집·분석하여 종단간 
최적화를 지원하는 핵심 요소로 확장되고 있음

O-RAN(Open Radio Access Network)  무선 접속망(RAN)
의 인터페이스를 개방하고 표준화하여 특정 장비 제조사에 대한 
종속성을 탈피하고, 지능형 컨트롤러(RIC)를 도입하여 AI 기반의 
유연한 망 제어를 가능하게 하는 개방형 무선 접속망 기술

RIC(RAN Intelligent Controller)  O-RAN 아키텍처의 핵
심 구성 요소로, 무선 자원을 관리하고 제어하는 지능형 컨트
롤러. 제어 주기에 따라 실시간성 제어를 담당하는 Near-RT 
RIC(xApp)과 데이터 학습 및 장기적 정책을 수립하는 Non-RT 
RIC(rApp)으로 구분됨

DataOps/MLOps  데이터 수집·정제부터 AI 모델의 개발, 학습, 
배포, 모니터링, 재학습에 이르는 전 과정을 자동화하고 효율적으
로 관리하기 위한 통합 운용 프레임워크. 6G 네트워크의 복잡한 
환경에서 AI 모델의 성능을 유지하고 신속하게 업데이트하기 위
해 필수적임

용어해설
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